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The unsteady behaviour of an infinitely long fluid-loaded elastic plate which is driven
by a single-frequency point-force excitation in the presence of mean flow is known
to exhibit a number of unexpected features, including absolute instability when the
normalized flow speed, U, lies above some critical speed U0, and certain unusual
propagation effects for U < U0. In the latter respect Crighton & Oswell (1991) have
demonstrated most significantly that for a particular frequency range there exists
an anomalous neutral (negative energy) mode which has group velocity pointing
towards the driver, in violation of the usual radiation condition of outgoing waves
at infinity. They show that the rate of working of the driver can be negative, due
to the presence of other negative-energy waves, and can also become infinite at a
critical frequency corresponding to a real modal coalescence. In this paper we attempt
to extend these results by including, as is usually the case in a practical situation,
plate curvature in the transverse direction, by considering a fluid-loaded cylinder
with axial mean flow. In the limit of infinite normalized cylinder radius, a, Crighton
& Oswell’s results are regained, but for finite a very significant modifications are
found. In particular, we demonstrate that the additional stiffness introduced by the
curvature typically moves the absolute-instability boundary to a much higher flow
speed than for the flat-plate case. Below this boundary we show that Crighton &
Oswell’s anomalous neutral mode can only occur for a > a1(U), but in practical
situations it turns out that a1(U) is exceedingly large, and indeed seems much larger
than radii of curvature achievable in engineering practice. Other negative-energy
waves are seen to exist down to a smaller, but still very large, critical radius a2(U),
while the existence of a real modal coalescence point, leading to a divergence in
the driver admittance, occurs down to a slightly smaller critical radius a3(U). The
transition through these various flow regimes as U and a vary is fully described by
numerical investigation of the dispersion relation and by asymptotic analysis in the
(realistic) limit of small U. The inclusion of plate dissipation is also considered,
and, in common with Abrahams & Wickham (1994) for the flat plate, we show
how the flow then becomes absolutely unstable at all flow speeds provided that
a > a2(U).

1. Introduction
The interaction between an elastic structure and the surrounding fluid is an essential

consideration in the design of almost all large-scale engineering structures, especially
for marine applications where the level of ‘fluid loading’ can be particularly significant.
Of great concern is the effect of structural inhomogeneities, such as rivets, which can
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transmit vibrations from nearby machinery into the coupled fluid–solid system, leading
at the very least to noise and fatigue problems and possibly even to the development
of potentially damaging instabilities. Indeed, the whole question of the excitation and
subsequent development of (for instance, flutter-type) instabilities in such systems
has attracted, and continues to attract, considerable attention. From a fundamental
and theoretical point of view, we mention here the early work of Benjamin (1960,
1963) and Landahl (1962), who were concerned with the unsteady behaviour of
an incompressible fluid flow over an infinite compliant surface (extensions to more
realistic Kramer surfaces have been undertaken by, for instance, Carpenter & Garrad
1985, 1986). A particular feature of such systems is the existence of negative-energy
waves, whose excitation can lead to a decrease in the system energy and which
are destabilized by plate dissipation or fluid viscosity (see Cairns 1979 for further
details).

Following on from this earlier work, recent research has indicated the possibility of
even more unexpected and unusual behaviour. The (deceptively simple) basic model
problem is to determine the causal long-time behaviour of an infinite, two-dimensional
elastic plate with non-zero mean flow on one side, driven by a single-frequency point
force. This problem was studied by Brazier-Smith & Scott (1984), essentially via a
numerical investigation of the unforced dispersion relation, and then in very great
detail analytically by Crighton & Oswell (1991). Both sets of authors used the spatial
instability theory developed first in plasma physics by Briggs (1964) and Bers (1983),
and were able to show that the flow is in fact absolutely unstable for flow speeds in
excess of a critical value U0 (which Crighton & Oswell determined in closed form).
For flow speeds less than U0, however, highly unusual propagation effects were seen
to occur, and in particular Crighton & Oswell identify an anomalous neutral mode
which, over a narrow range of frequencies (ωs < ω < ωp say), is found downstream
of the driver but with a negative group velocity (i.e. a group velocity directed
towards the driver), in violation of the usual outgoing-wave radiation condition.
This behaviour is shown to be a consequence of the fact that the driver is not the
only source of energy in the system, and that the wave disturbances can act so
as to extract energy from the mean flow. Indeed, Crighton & Oswell demonstrate
that the mean rate of working of the driver, as measured by the real part of the
line admittance, is positive for ω > ωp, but is negative both in their anomalous
propagation range ωs < ω < ωp and in the frequency range 0 < ω < ωs over which
the flow is convectively unstable. Also, the driver admittance becomes infinite at
ω = ωp, corresponding to a modal coalescence (or ‘pinch’) on the real k-axis. It
must be emphasized that these effects are entirely to be associated with the presence
of mean flow – when the mean-flow speed is zero, all modes have group velocity
directed away from the driver, and the mean rate of working of the driver is always
positive.

The way in which such an apparently simple problem can exhibit such unusual
behaviour has excited quite considerable interest. For instance, Abrahams & Wick-
ham (1994) have used largely analytical techniques to study the same infinite-plate
problem as Crighton & Oswell (1991), but with additional features such as plate
dissipation, modified plate equations and mean shear. Their findings seem to con-
firm Crighton & Oswell’s results, but also indicate additional unusual behaviour,
including the fact that once plate dissipation is included the flow becomes abso-
lutely unstable for all mean-flow speeds. Also, Wu & Maestrello (1995), Lucey
& Carpenter (1992) and Lucey (1996) have examined the case of a finite elastic
baffle in a rigid plane with mean flow, and although these investigations have been
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completed numerically, so that direct comparison with Crighton & Oswell’s (1991)
results is difficult, it does seem that significant differences from the infinite case can
arise.

In this paper we aim to pursue Abrahams & Wickham’s idea of extending the
Crighton & Oswell (1991) infinite-plate analysis, but here to include the effects of
transverse plate curvature, and this seems to be a problem of particular relevance,
since the wave motions typically have long wavelengths which must be at least
comparable to the radii of curvature found in many engineering structures. In
physical terms, the transverse plate curvature will essentially introduce a second
(hoop) stiffness into the Crighton–Oswell problem, and we will see that this will
produce very significant modifications to the flat-plate dynamics, even for exceedingly
small amounts of curvature. Specifically, we consider here an infinitely long elastic
cylinder with uniform axial mean flow either externally or internally, which is driven
by a time-harmonic ring force of fixed azimuthal mode number. The motion of
a fluid-loaded cylindrical shell with mean flow has been studied extensively, for
instance in a very thorough investigation of the dispersion relation by Scott (1988),
and in terms of the acoustic radiation properties by Zhang & Abrahams (1995)
and Guo (e.g. 1996). The behaviour of collapsible tubes with flow has also been
studied extensively, particularly in the context of pulmonary flow (see for instance
the review by Grotberg 1994). Also, Triantafyllou (1992) has studied the absolute
instability of a very thin cylindrical beam placed in an external flow using slender
body theory. However, it seems that the sort of dispersion-relation analysis carried
out by Crighton & Oswell for the flat plate has not been performed for a thin
cylindrical shell with mean flow, and that will therefore be the subject of the present
paper.

In §2 we describe the mathematical formulation and solution of the problem, and
outline the Briggs–Bers method used to determine the causal long-time limit of the
initial value problem. In §3 we then investigate the conditions required for absolute
instability – in the limit of infinite cylinder radius the Crighton & Oswell result is
regained, but for finite (but still large) cylinder radius the minimum value of flow
speed required for absolute instability is increased very significantly, and apparently
well beyond the speed ranges encountered in typical underwater applications. For
small values of U we present an implicit expression for the absolute instability
boundary. In §4 we then investigate the behaviour of the system below this critical
flow speed. Most strikingly, we show that Crighton & Oswell’s anomalous mode with
inward-pointing group velocity is eliminated by even a small amount of curvature;
for instance, for steel in water with a typical flow speed we find that the anomalous
propagation effect is only present when the plate radius of curvature is greater than
about 166 000 plate thicknesses, which seems to be a degree of flatness which is
not attained in engineering practice! Specifically, we uncover a sequence of critical
radii a1(U) > a2(U) > a3(U): for a < a1(U) the anomalous mode mentioned above
cannot occur, for a < a2(U) there are no remaining negative-energy waves and
the driver can no longer absorb energy, and for a < a3(U) a pinch coincidence
between two real modes (leading to divergent driver admittance) no longer occurs.
As already mentioned, in typical flow conditions a1(U) is an exceedingly large number,
while a2,3(U) are somewhat smaller but still very large. Finally, in §5 we indicate
how the inclusion of plate dissipation modifies our results, and in parallel with
Abrahams & Wickham (1994) for the flat plate we show how, for a very general set
of parameter values, the system then becomes absolutely unstable at all flow speeds
for a > a2(U).
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Figure 1. The cylindrical shell. The mean flow is aligned parallel to the cylinder axis and is located
either (i) outside the cylinder, with a vacuum inside, or (ii) inside the cylinder with a vacuum
outside.

2. Formulation and solution
2.1. Governing equations

We consider an infinitely long elastic cylinder, with a uniform circular cross-section
of outer radius a∗ and plate thickness h∗ (in what follows the superfix ∗ denotes
dimensional quantities), and introduce plane polar coordinates (r∗, θ, z∗) with the
cylinder axis lying along the z∗-axis – see figure 1. The cylinder is subjected to a
localized ring force at z∗ = 0 of the form F∗(t∗) exp(imθ)δ(z∗) in the outward normal
direction, where m is an integer and t∗ is the time. The force is switched on at the
initial instant t∗ = 0, so that F∗(t∗) = 0 for t∗ < 0. Given the circular symmetry of the
problem it follows that the azimuthal dependence of all flow quantities will be included
in the multiplicative factor exp(imθ), but clearly more complicated force distributions
can be considered as a sum of these discrete modes. Inviscid incompressible fluid
surrounds the cylinder, and in what follows we consider two possible scenarios: (i) the
fluid lies outside the cylinder and possesses a steady mean speed U∗ in the positive
z∗-direction, with a vacuum inside the cylinder (this will be referred to as the exterior
problem); (ii) the fluid lies inside the cylinder, again with uniform mean flow in the
positive z∗-direction, with a vacuum outside the cylinder (this is the interior problem).
The case in which fluid lies both inside and outside is an entirely straightforward
generalization of these problems, and will not be considered further. It should be
noted here that one feature omitted from our present study is the effect of gravity,
which would clearly depend on the relative densities of the solid and of the fluids
inside and outside the cylinder, as well as on the orientation of the cylinder. In the
Appendix we note how gravitational effects are included in a simpler two-dimensional
model.

The fluid and solid densities are ρ∗0 and ρ∗s respectively, and the quantity c∗p (see
Junger & Feit 1986, equation 2.53) is given by

c∗p
2

=
E∗

(1− ν2)ρ∗s
, (2.1)

with E∗ and ν the Young’s modulus and the Poisson ratio for the solid (note
that the fluid sound speed is infinite, since the flow is incompressible). We now non-
dimensionalize all lengths by h∗/ρ, time by

√
12h∗/(c∗pρ

2) and pressures by ρ∗0ρ
2(c∗p)

2/12,
where ρ is the fluid–solid density ratio ρ∗0/ρ

∗
s . The normalized ring force per unit
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length is F0 = F∗0/(ρ
∗
s h
∗c∗p

2). We shall suppose that the cylindrical shell is thin,
so that h∗/a∗ � 1, and that the plate displacements are small, and the motion of
the cylindrical shell under fluid loading is therefore described by Donnell’s thin-
shell equations. The axial, azimuthal and radial plate displacements are denoted
[u, v, w](z, t) exp(imθ) respectively, and from Junger & Feit (1986, p. 217) it follows
that the thin-shell equations are

∂2u

∂z2
− (1− ν)

2a2
m2u+

i(1 + ν)

2a
m
∂v

∂z
+
ν

a

∂w

∂z
− ρ2

12

∂2u

∂t2
= 0, (2.2a)

−m
2

a2
v +

(1− ν)
2

∂2v

∂z2
+

i(1 + ν)

2a
m
∂u

∂z
+

im

a2
w − ρ2

12

∂2v

∂t2
= 0, (2.2b)

aν
∂u

∂z
+ imv + w +

ρ2

12a2

(
a4 ∂

4w

∂z4
− 2a2m2 ∂

2w

∂z2
+ m4w

)
+
a2ρ2

12

∂2w

∂t2

= −a
2ρ2

12
[p(a, z, t)]+

− + F0aδ(z), (2.2c)

to be applied on r = a, where a = a∗ρ/h∗. Here [p(a, z, t)]+
− exp(imθ) is the jump in

the fluid hydrodynamic pressure across the cylinder surface, and is equal to

±p(a±, z, t) exp(imθ)

for the external and internal problems respectively; its appearance in the third shell
equation corresponds to the effects of fluid loading on the cylinder motion. The fluid
pressure is obtained from the linearized unsteady Bernoulli equation in the form

p = −
(
∂φ

∂t
+U

∂φ

∂z

)
, (2.3)

where U=U∗
√

12/(c∗pρ) is the non-dimensional mean-flow speed and φ(r, z, t) exp(imθ)
is the fluid velocity potential. For irrotational flow this potential satisfies Laplace’s
equation

∇2φ = 0 (2.4)

in r > a (external) and r < a (internal), which must be solved subject to the conditions
of regularity at either r = ∞ or r = 0 respectively. In addition, we have the boundary
condition of the continuity of normal velocity on the cylinder surface, which in the
limit of small shell thickness and displacement considered here becomes

∂w

∂t
+U

∂w

∂z
=
∂φ

∂r
on r = a. (2.5)

Finally, we demand that the solution is causal (i.e. unsteady flow variables are zero
for t < 0), and equations (2.2)–(2.5) then specify the unique motion of the cylinder
and the fluid. Our aim will be to determine this solution in the long-time limit t→∞,
and this is described in the next subsection.

2.2. Mathematical solution

We begin by defining the Fourier transform in the axial coordinate z and time t, with
for instance

w̄(k, ω) =

∫ ∞
−∞

∫ ∞
−∞
w(z, t) exp(iωt− ikz)dzdt. (2.6)

Now transforming equations (2.2)–(2.5) and then completing a considerable amount
of straightforward algebra, we can determine expressions for the three plate displace-
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ments and the fluid velocity potential in terms of Fourier inversion integrals. For
example, we find for the radial plate displacement

w(z, t) = − 3

π2aρ2

∫
C

∫ ∞
−∞

F̄0(ω)

D(k, ω;m)
exp(−iωt+ ikz)dkdω. (2.7)

Here the spatial inversion (or k) contour is chosen to be the real k-axis, and in order
to enforce causality the temporal inversion (or ω) contour C is chosen to be a straight
line running parallel to the real ω-axis and lying above all singularities in the ω-plane.
Note that F̄0(ω), the time-transform of the normalized driving force, is analytic in the
upper half of the ω-plane, so that the condition on C corresponds to the requirement
that it lies above all ω zeros of the dispersion function D(k, ω;m) for −∞ < k < ∞.
The dispersion function is D(k, ω;m) = D(k, ω;m)/Λ(k, ω;m), where

D(k, ω;m) =

{
Λ(k, ω, m)

(
− 12

ρ2a2
− (k2 + m̃2)2 + ω2 − (ω −Uk)2F(k; a)

)
−ω

2

a2

(
m̃2 + ν2k2

)
+

6(1− ν)
a2ρ2

(
k4ν2 + 2m̃2k2 + m̃4

)}
, (2.8a)

Λ(k, ω;m) =

[
k2 + m̃2 − ρ2ω2

12

] [
(1− ν)

2
(k2 + m̃2)− ρ2ω2

12

]
(2.8b)

and m̃ = m/a. The factor F(k; r) is given by

F(k; r) =
Km(r|k|)
|k|K′m(r|k|) for the external problem

= − Im(r|k|)
|k|I′m(r|k|) for the internal problem, (2.9)

where Km(z) and Im(z) are modified Bessel functions of order m. The complex function
|k| arises from the transform of the bounded solutions of Laplace’s equation, and is
equal to k in the right half of the k-plane, and equal to −k in the left half-plane.
It is worth noting here that for all real values of k we have that F(k; r) is real
and negative; for the external and internal problems this is best seen by use of the
relations 9.6.24, p. 376 and 9.6.10, p. 375 respectively of Abramowitz & Stegun (1968).

We can see that the cylinder radius always occurs in the dimensionless group
a = a∗ρ0/h

∗ρs, while the azimuthal mode number arises in the form m/a2 apart from
in the order of the special functions in F(k;m), and for a given choice of solid and
fluid (in this paper usually steel in water) these two numbers completely specify the
dispersion function. As we will see, the value of a has a crucial effect on the behaviour
of our solution. Note that the dispersion relation for our system, D(k, ω;m) = 0, is
trivially equivalent to D(k, ω;m) = 0.

2.3. Evaluation of the long-time limit

The explicit evaluation of the integral in (2.7) for arbitrary t could be completed
numerically, but in this paper we will be concerned with investigating the long-time
limit (t→∞) of the solution analytically. In order to do this we apply the method first
described by Briggs (1964) and Bers (1983), in which the long-time limit of the solution
of our forced problem can be determined by studying the dispersion relation of the
homogeneous unforced problem. The temporal contour C is deformed downwards
onto the real ω-axis, causing the poles of the integrand in the k-plane, corresponding
to the k-roots of the dispersion relation D(k, ω;m) = 0, to move and to potentially
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cross the real k-axis. In order to retain a causal solution, the k-contour must then
be continuously deformed off the real axis so as to avoid any pole crossings. The
reader is referred to Brazier-Smith & Scott (1984) for a particularly clear description
of this method applied in fluid–structure interaction problems; it turns out that in
our problem there are essentially four possible scenarios, which are described briefly
below.

(a) The contour C can be deformed all the way down onto the real ω-axis without
any poles crossing over the k-axis, so that the k-contour remains along the real axis,
although possibly indented either above or below any poles which come to rest on the
real k-axis. The question of whether such neutral modes are found either upstream
or downstream of the driver at z = 0 then depends on which half of the k-plane the
pole had originated from, or (in this case) entirely equivalently on the sign of the
local group velocity ∂ω/∂k on the real axis.

(b) A pole from the upper half of the k-plane crosses the real k-axis as C is lowered,
necessitating a downward deformation of the k-contour. The pole is then picked up
in x > 0, and corresponds to a convectively unstable wave downstream of the driver.

(c) A pole from the upper half-k-plane crosses the real k-axis as C is lowered in
the ω-plane, but then turns round and moves back upwards so as to lie on the real
k-axis once C has moved all the way down onto the real ω-axis (see figure 4). In
such a situation the (neutral) mode will be located in x > 0, since it originated in
the upper half of the k-plane, but its local group velocity on the axis is negative,
incorrectly implying that the mode is to be found in x < 0. This behaviour results
in an anomalous propagation effect, and this will be discussed fully in the context of
our cylinder flow in §4.

(d) As the ω-contour C is lowered, poles in the k-plane coalesce, or pinch, from
opposite sides of the k-axis, preventing further deformation of the k-contour. In this
case it can be shown that the flow is absolutely unstable (again see Brazier-Smith &
Scott 1984 for full details).

All four of the possible types of behaviour listed above are found by Crighton &
Oswell (1991) for the flat plate with mean flow, and indeed they will also be found in
our cylinder problem. However, we will see that plate curvature has a very marked
effect on the range of parameter values over which these different regimes can exist,
and in particular we will show how the more unexpected types of motion (namely
(c), the anomalous propagation and (d), the absolute instability) actually only occur
in our problem for exceedingly large, and it is claimed physically unrealistic, values
of either the plate curvature parameter a or the flow speed U. This will be described
in §3 and §4.

2.4. Flat-plate solution

Before going on to analyse the dispersion function for our cylinder, we briefly consider
here the effect of taking the limit of very large cylinder radius. By sending a→ ∞ in
(2.8), we find that

D(k, ω;m)→ D∞(k, ω) ≡ −k4 + ω2 +
(ω −Uk)2

|k| , (2.10)

for both the external and the internal problems (because the ratio of the special
functions in (2.9) approaches ∓1 respectively in their large-argument limits), and for
any azimuthal mode number m (essentially because m occurs only as the order of
the special functions or in the form m/a). The equation D∞(k, ω) = 0 is exactly the
dispersion function obtained by Brazier-Smith & Scott (1984) and Crighton & Oswell
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(1991) for the problem of a fluid-loaded flat plate with mean flow. As might be
expected, the effects of plate curvature therefore disappear in the limit a → ∞, and
our results will be seen to exactly match onto Crighton & Oswell’s flat-plate results
when a is very large – the question to be addressed here is how much plate curvature
is required in order to produce a solution which differs significantly from Crighton
& Oswell’s result. The fact that the value of m does not feature in the dispersion
relation in this limit is entirely understandable, since for a flat plate the normal
displacement (i.e.w) is uncoupled from the transverse displacements (i.e. u, v), so that
exp(imθ) appears only as a purely unimportant transverse phase factor.

3. Absolutely unstable flow
3.1. General case

As described in (d) above, if two k-roots of D(k, ω;m) = 0 pinch together from
opposite halves of the k-plane as the ω-contour C is deformed downwards towards
the real ω axis, then the deformation of C must be halted. Brazier-Smith & Scott
(1984) describe the long-time behaviour of the solution in such a case: suppose the
two k zeros coalesce at k = kp corresponding to ω = ωp with Im(ωp) > 0, then
as t → ∞ the plate response (e.g. w(z, t)) will be dominated by a contribution at
the complex frequency ωp (so that w(z, t) ∝ exp(−iωpt)), and the response therefore
grows exponentially in time for all z, so that the flow is absolutely unstable. It
follows that in order to determine whether our forced problem is absolutely unstable
or not, we simply need to look for suitable k pinch points in the unforced dispersion
relation D(k, ω;m) = 0. In practical terms, however, it is more straightforward to
look for saddle points of D (i.e. points where ∂ω/∂k = 0), and provided that such a
saddle point corresponds to a frequency with a positive imaginary part, and provided
that the topology in the k-plane is such that the saddle is formed by coalescence of
modes from opposite half-planes, then the saddle will indeed correspond to a point
of absolute instability. Such a ‘pinch’ point can be found in the present problem, and
by analogy with Crighton & Oswell (1991) it is to be expected that for this saddle
we will find Im(ωp) > 0 for U > Uc(a, m), leading to absolute instability, while for
U 6 Uc we will have Im(ωp) 6 0 and the flow will be at worst convectively unstable.
This indeed turns out to be the case.

Unlike the flat-plate problem, it is not possible to determine the exact absolute
instability boundary for the cylinder in closed form, and we therefore proceed nu-
merically. First, for a given value of U (say U = 1) and a very large value of a
(in this case say a = 1000) the (absolutely unstable) saddle point was located in
the k-plane by Newton iteration, using as a first guess the position of the saddle
calculated from Crighton & Oswell’s (1991) result. The value of a is then decreased in
small increments, and the new location of the saddle recalculated, again using Newton
iteration. In this way we can determine the value of a at which the imaginary part of
the saddle frequency becomes zero, and our given value of U then corresponds to the
absolute instability boundary Uc(a, m) for this a. The whole process is repeated for a
wide range of values of U, allowing the absolute instability boundary to be plotted
as a function of a. At each stage care must be taken to verify that the saddle still
corresponds to a genuine pinch, and that no other absolutely unstable saddles exist
(this is best verified simply by inspection of contour maps of ω in the k-plane). In
order to zero ∂ω/∂k using Newton iteration it is necessary to calculate ∂2ω/∂k2, and
care must be taken in calculating this second derivative accurately. It was found that
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Figure 2. The absolute instability boundary. The value of flow speed U corresponding to the
absolute instability boundary is plotted against curvature parameter a for the external problem with
m = 0 (solid line) compared with the asymptotic result for small U (diamond symbols). The vertical
dashed line represents the Crighton & Oswell absolute instability boundary U = U0.

Cauchy’s integral formula for the second derivative was particularly accurate and
convenient, since it involves the evaluation of just ω (and not any of its derivatives)
on a closed curve surrounding the point of interest in the k-plane.

Our numerical results for the absolute instability boundary of the external problem
Uc(a, m) with m = 0 are shown in figure 2. Unless otherwise stated, we consider
throughout this paper the case of steel in water, so that ρ0 = 1000 kg m−3, ρs =
7800 kg m−3 (density ratio ρ = 0.128), c∗p = 5300 m s−1 and the Poisson ratio is
ν = 0.3. As expected, the absolute instability boundary asymptotes to the Crighton
& Oswell result of U0 ≈ 0.074 when a = ∞, but as a is reduced the critical value
of U increases very rapidly indeed, with the consequence that absolute instability
seems only to be possible for unachievably large values of either a or U. For
instance, if we want the flow to be absolutely unstable for U = 0.1 (corresponding
to U∗ = 19.6 m s−1 for steel in water) then we require a > 7700 (corresponding to
a∗/h∗ > 60000). Conversely, in order to achieve absolute instability with say a = 100
(corresponding to a∗/h∗ = 780) then we need U > 0.87 (i.e. U∗ > 171 m s−1), or with
a = 20 (a∗/h∗ = 156) we need U > 2.2 (i.e. U∗ > 435 m s−1). It should be noted
that the absolute instability boundaries for the internal problem and for m 6= 0 are
indistinguishable from that shown in figure 2, apart from at exceedingly large and
unrealistic values of U (for which our original assumptions of incompressible flow
are invalid anyway), and need not be considered further.

3.2. Limit of small U

As mentioned above, it has not proved possible to derive an analytical expression for
the absolute instability boundary for general curvature parameter a and flow speed
U. However, following Crighton & Oswell (1991) it is possible to make progress using
the asymptotic limit U → 0, and from figure 2 it is clear that in this limit the absolute
instability boundary will correspond to a � 1. In practical underwater applications it
seems that almost always U � 1, so that this limit is physically realistic.
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The first step is to deduce the appropriate scalings of the axial wavenumber,
k, and frequency, ω, when the flow is close to the absolute instability boundary
(i.e. when the imaginary part of the pinch frequency is close to zero). Since
absolute instability arises purely as an effect of the mean flow, we can suppose
ω ∼ Uk, and further we know from Crighton & Oswell (1991) that the absolute
instability boundary occurs when there is a balance between the fluid pressure
term in the dispersion relation, which is proportional to (ω − Uk)2F(k; a), and
the axial plate bending stiffness, which is proportional to k4. By combining these two
scalings and noting that F(k; a) is typically O(1/|k|), we find that for small U the
wavenumbers and frequency scale as k = O(U2/3), ω = O(U5/3). Turning now to the
question of the size of a, we find that the scaling a = O(U−5/3) is a preferred limit,
and substituting into (2.8) and expanding in powers of U, the dispersion relation
becomes

k4 − (ω −Uk)2

|k| − ω2 +
12(1− ν2)

ρ2a2
+ O(U11/3) = 0. (3.1)

Here, the first two terms are O(U8/3) and the second two are O(U10/3); the re-
maining terms in (2.8) occur at a higher order in U and are ignored – the largest
such term occurs at O(U11/3) and arises from the large-argument expansion of
F(k; a). Note that since we are considering large values of a the azimuthal mo-
tion is again decoupled so that m does not feature in the asymptotic dispersion
relation, and the only effect of curvature which survives is the fourth term in (3.1).
This term corresponds to the contribution to the plate stiffness from the material
stress in the azimuthal direction, and is of course absent for a flat plate. Inter-
estingly, Dr A. D. Lucey (1996, personal communication) has pointed out that
the dispersion relation (3.1) is equivalent to that of an infinite two-dimensional
flat plate in mean flow, but with a spring foundation; for completeness, the equa-
tions of motion and the dispersion relation for such a system are included in the
Appendix.

Absolute instability can arise when (3.1) possesses a double root in the k-plane for
a given ω with Im(ω) > 0. For a polynomial dispersion relation of the form (3.1),
Crighton & Oswell (1991) point out that marginal absolute instability occurs when
this double root coincides with a third k-root of the dispersion relation to yield a
triple root on the real k-axis (in Crighton & Oswell’s notation, the absolute instability
arises from the pinching of the modes k+

1,3, and marginal absolute instability from the

coalescence of these modes with k+
2 – see figure 4). The condition for a triple root

can easily be determined by differentiating (3.1) twice, and after some algebra we find
that this triple root occurs at

k =
U2/3

101/3
, ω =

U5/331/2

21/355/6
, (3.2)

provided that U satisfies the implicit relation

a2 = +
(1− ν2)55/328/3

ρ2U8/3[U2/3 −U2/3
0 ]

, (3.3)

where

U0 =
55/421/2

33/4

[
2− 151/2

2

]3/2

≈ 0.074 (3.4)

is the value of flow speed corresponding to Crighton & Oswell’s absolute instability
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boundary for a flat plate (for steel in water U∗0 = 14.5 m s−1). It follows that for
U � 1 our cylinder problem is absolutely unstable for values of U greater than
the single positive real solution of (3.3), and is at worst convectively unstable for
values of U below this critical value. Note that as a → ∞ in (3.3) our value for
U at the absolute instability boundary agrees exactly with that found by Crighton
& Oswell (1991) in the flat-plate case, while for finite, but large, values of a the
bounding value of U is greater than U0, in agreement with the numerical solution
in §3.1. In fact, the boundary described by (3.3) is plotted in figure 2, and is seen
to be indistinguishable from the absolute instability boundary calculated numerically
from the full dispersion relation. We also note, by putting the dimensions back into
(3.3), that for a given flow speed U∗ the minimum value of a∗/h∗ needed for absolute
instability is proportional to ρ∗s /ρ

∗
0. As we saw in §3.1, these values of a∗/h∗ are very

large indeed for steel in water, but for steel in air (ρ0 ≈ 1.3 kg m−3) it follows that the
corresponding minimum of a∗/h∗ is some 745 times larger still! The form of equation
(3.3) confirms that a = O(U−5/3) is indeed a preferred limit for the analysis of the
absolute instability of our cylinder. If a > O(U−5/3) then the curvature has no effect
on the absolute instability boundary, which is then given exactly by the flat-plate
result U = U0. If a < O(U−5/3) then the scalings described here can no longer predict
the absolute instability boundary, which must instead be determined numerically as
in the previous subsection.

4. Convectively unstable and stable flow
In the previous section we showed that our flow was absolutely unstable if the non-

dimensional mean flow speed U is larger than a critical value Uc(a, m). In this section
we shall suppose that U < Uc(a, m) so that the flow can be at worst convectively
unstable, and so that the Briggs–Bers method can potentially exhibit the possible
types of behaviour (a), (b) and (c) described in §2.3. This means that in determining
the long-time limit of our solution the temporal inversion contour C can be deformed
all the way down onto the real ω-axis, and in what follows we are therefore able to
consider real frequencies.

4.1. Behaviour of dispersion curves

Here we consider dispersion curves ω = ω(k), where D(k, ω;m) = 0 with ω real –
note that the dispersion relation is invariant under k → −k, ω → −ω, so that we
need consider only k > 0. In figure 3 we plot the dispersion curves for U = 0.05
(the test case used by Crighton & Oswell 1991, corresponding for steel in water to
U∗ = 9.8 m s−1) with m = 0 and for four different values of the curvature parameter
a. In this axisymmetric case the dispersion relation reduces to a quartic in ω, but two
of the roots approximate (for large a) to the compressional waves ω = ∓(121/2/ρ)k,
which appear to exhibit no unusual features and are therefore omitted from further
consideration. In figure 3(a) we have the very large value of a = 25000 (for steel
in water corresponding to a∗/h∗ = 1.95 × 105), and we can see that the dispersion
diagram has three distinct regions. For k < ka and for k > kb the two ω-roots are
real and the system is stable, while for ka < k < kb the two ω-roots are complex.
By applying the Briggs–Bers method one can demonstrate that these complex poles
exhibit behaviour (b) of §2.3, so that the flow is convectively unstable. (Note also
that for ω > ωp there exist additional complex k-roots, but these correspond to waves
which decay away from the driver, and need not be considered further.) At k = ka,b
(frequencies ωa,b) the group velocity ∂ω/∂k is infinite, corresponding to branch points
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of the dispersion function, while at k = ks,p (Crighton & Oswell’s notation) the group
velocity is zero. It is worth noting here that for a flat plate (a = ∞) the dispersion
curve looks exactly like the one shown in figure 3(a), except that the real branch to
the left of the point k = ka is missing so that the flow is then convectively unstable
for all k < kb. In figure 3(b) and 3(c) we have smaller, but still large, values of a
and it can be seen that the region of convective instability has now disappeared, so
that the system is stable for all k (again spatially decaying modes exist for ω > ωp).
The group velocity now vanishes at two points on the lower branch: at the point
k = kp as before, and at the point k = kq (which in figure 3a, b is exceedingly close
to k = 0, but which moves away from k = 0 as a is decreased). Finally, for a much
smaller value of a = 500 (corresponding to the still large value of a∗/h∗ = 3900) in
figure 3(d), the system is stable for all k and the group velocity is never zero. We
can therefore conclude that as a is reduced from infinity the form of the dispersion
curves changes as shown in figure 3; by considering the full dispersion relation (2.8),
it was found numerically that for the conditions in figure 3 the region of convective
instability vanishes at approximately a = 21 370 (i.e. the transition from figure 3a
to figure 3b), while the points of zero group velocity coalesce and then disappear at
a = 1165 (i.e. the transition from figure 3c to figure 3d).

It is possible to investigate this change in behaviour using asymptotic analysis in
the limit of small U. Following Crighton & Oswell (1991), it can be seen from figure 3
that k and ω are both small, and since we are interested in mean-flow effects we
again suppose that ω = O(Uk). We will see that in the preferred limits for describing
the above behaviour we have ak � 1, so that using the large-argument expansions
of the various special function we can replace F(k; a) in (2.8) by −1/|k|. Moreover,
provided m = O(1) the terms in (2.8) involving m̃ can be set to zero, and it therefore
follows that our dispersion relation D(k, ω;m) = 0 can be simplified to

ω2(k + 1)− 2Ukω − 12(1− ν2)

ρ2a2
k − k5 +U2k2 = 0, (4.1)

which is identical to the approximation specified in (3.1). We now calculate the group
velocity from this dispersion relation in the form

∂ω

∂k
=

2UA
1/2
1 ± A2

2(k + 1)2A
1/2
1

, (4.2)

where

A1 = k6 + k5 −U2k3 +
12(1− ν2)

ρ2a2
k(k + 1),

A2 = 4k6 + 9k5 + 5k4 −U2k3 − 3U2k2 +
12(1− ν2)

ρ2a2
(k + 1).

 (4.3)

If we set a = ∞, then (4.2) reduces exactly to the flat-plate result (Crighton & Oswell

Figure 3. The dispersion curves for the external problem with the full dispersion relation (2.8) with
U = 0.05, m = 0 and with (a) a = 25000, (b) a = 20000, (c) a = 4000, (d) a = 500. In (a) and (b)
the broken lines denote the frequency ω = 0.002016 used in figure 4. The material parameters used
here correspond to steel in water, and are described in §3.1. In (a) the dotted line joining ka and kb
corresponds to the real part of the convectively unstable mode.
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1991, equation 5.10). We also note here that in limit of small U

∂D

∂ω
= ± A

1/2
1

k2 − 1
12
ρ2ω2

(4.4)

for ω, k satisfying the dispersion relation, where ± denote the upper and lower
branches of the dispersion curve.

At the branch points k = ka,b the group velocity is infinite, and according to
Crighton & Oswell’s analysis kb = O(U). In order to determine ka,b we therefore set
k = O(U) and adopt the preferred scaling on a, which turns out to be a = O(U−2).
For infinite group velocity (4.2) implies we need A1 = 0 for some k, and substituting
in the above scalings results in a quadratic in k2. The condition that the branch
points k = ka,b exist for real k is then equivalent to the requirement that this quadratic
possesses real roots, so that the necessary and sufficient condition for the branch
points to occur for real k is that

a > a1(U) =

[
48(1− ν2)

ρ2U4

]1/2

. (4.5)

Our system is therefore convectively unstable for a > a1(U) and stable for a < a1(U).
As might be expected, the length of the convectively unstable region on the k-axis is
extended by increasing either the mean-flow speed or the fluid–solid density ratio. For
the parameters considered in figure 3, equation (4.5) yields a1 = 20 620, which agrees
with the result of a1 = 21 370 found numerically from the full dispersion relation with
an error of only 3%.

The existence of the points of zero group velocity at k = ks,p,q can be analysed in
much the same way as above. It can be shown from (4.2) that the values of k where
∂ω/∂k = 0 satisfy

U2 =
F(k3 + 3k2) + 2G

(k3 + 3k2)2 + 4k3

{
1±

(
1− F2[(k3 + 3k2)2 + 4k3]

[F(k3 + 3k2) + 2G]2

)1/2
}
, (4.6)

where

F ≡ 12(1− ν2)

ρ2a2
(k + 1) + 4k6 + 9k5 + 5k4,

G≡ A1 +U2k3.

 (4.7)

For the point k = ks we again choose k = O(U), and the preferred limit of a again
turns out to be a = O(U−2). By substituting these scalings into the larger root in (4.6)
and then expanding in powers of U, it is easy to show that (4.6) reduces to

U2 = k2 +
12(1− ν2)

ρ2U4k2
. (4.8)

The condition for the existence of the turning point at k = ks is then equivalent to the
condition that this equation possesses a real k-root, and this is exactly the condition
(4.5). Alternatively, for the turning points at k = kp,q we take the scaling k = O(U2/3)
(i.e. the same as in the absolute instability case), and it turns out that the preferred
limit of a is now a = O(U−4/3). Substituting these scalings into (4.6) and expanding
in powers of U, we now find that at these turning points we have

U =
5k4 + 12(1− ν2)/ρ2a2

2
(
k5 + [12(1− ν2)/ρ2a2]k

)1/2
, (4.9)
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which for a = ∞ agrees exactly with the Crighton & Oswell result of k = (4U2/25)1/3.
The existence of the turning points for real kp,q then depends on equation (4.9)
possessing two real positive roots, and this reduces to the condition of the form
a > a3(U) (at a = a3(U) the two real positive roots coalesce to yield a single real
point of zero group velocity, while for a < a3(U) no positive real roots of (4.9) exist).
It has not proved possible to find a3(U) explicitly, but numerical calculations are
very straightforward: for the parameter values used in figure 3 we find from (4.9)
that a3 = 1176, which agrees with the value of a3 = 1165 determined using the full
dispersion relation (2.8) with an error of only 1%. Also, we find that a3 decreases
monotonically with increasing U and increasing ρ. It is worth noting here that the
‘pinch’ points k = kp,q are significant since they possess zero group velocity, and the
corresponding modes would not tend to propagate away from their point of initial
excitation. These modes would therefore tend to be a feature of the response at that
point even at late times.

We note that the turning point k = kp moves to progressively lower frequency
ω = ωp as a is reduced towards a3 (see figure 3a, b). We will see later that the
condition ωp = 0 is particularly significant, and it is again possible to use the large-a
asymptotics to estimate when this happens. By setting ω, ∂ω/∂k = 0 in both equation
(4.1) and its k-derivative, we find that ωp > 0 when a > a2(U), where

a2(U) =
27/3(1− ν2)1/2

ρU4/3
. (4.10)

For the conditions used in figure 3 we calculate a2 = 2036, which agrees exceedingly
well with the value of a2 = 2040 found by examining the full dispersion relation
numerically.

Finally, it is of some interest to consider the behaviour of the dispersion curves for
small k, particularly since in our problem real modes are present right down to zero
wavenumber, in contrast to the flat-plate problem in which modes with k < kb are
complex. For small k we see from (4.1) that

ω = Uk ±
[

12(1− ν2)k

ρ2a2

]1/2

+ O(k3/2). (4.11)

These two branches of course correspond to the two branches seen in figure 3 close
to k = 0, and to this order in k are equally spaced about the uniform-flow curve
ω = Uk. When a is very large indeed (in fact a > O(U−4/3)), differentiation of (4.11)
confirms the presence of the point of zero group velocity kq very close to the origin –
in fact, this value of kq exactly agrees with that found by taking the small-k limit in
(4.9). Moreover, it can be seen that the group velocity determined from (4.1) becomes
infinite at k = 0.

4.2. Spatial location of modes

In order to determine the spatial location of the neutral modes rigorously (i.e. either
upstream or downstream of the driver) we must use the Briggs–Bers method as
outlined in §2, whereby Im(ω) is decreased from some large positive value towards
zero. For the values of a used in figure (3a, b) we plot the loci of the various roots
for a single frequency satisfying ωb < ω < ωs in figure 4 (this frequency is marked
by the broken lines in figure 3a, b). The modes denoted k+

1,3 (Crighton & Oswell’s
notation) originate in the upper and lower halves of the complex k-plane for large
Im(ω), and move monotonically onto the real axis as Im(ω) is reduced to zero;
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k+
1,3 are therefore found in x > 0 and x < 0, and with group velocities pointing

downstream and upstream, respectively for both values of a. On the other hand, the
mode k+

2 originates in the upper half-plane, and for a > a1 it then moves into the
lower half-plane before coming to lie on the real axis from below once Im(ω) = 0 (i.e.
behaviour c) of §2.3). Hence, the k inversion contour must be deformed below k = k+

2 ,
and the mode is found in x > 0 but with its group velocity pointing (anomalously)
upstream. This exactly matches the behaviour found by Crighton & Oswell for the
flat-plate problem (cf. their figure 7), who show that k+

2 (ω) exhibits this anomalous
behaviour for any frequency in the anomalous range ωs < ω < ωb. Alternatively, for
a < a1 we see in figure 4 that the mode k+

2 moves straight onto the real k-axis without
first entering the lower half-plane, so that it is again found in x > 0 but this time
with its group velocity pointing (conventionally) downstream.

An alternative method of determining the spatial location of neutral modes is to
apply Lighthill’s (1960) local group velocity criterion: for a neutral mode k(ω) with
ω real, fictitious damping is introduced as an imaginary part of the frequency, so
that k(ω) → k(ω + iε) with ε small and positive. The displacement of the mode
off the real k-axis, and hence the required deformation of the inversion contour and
consequent spatial location of the mode, then depends on the local group velocity
∂ω/∂k. Lighthill’s criterion states that for systems where the driver is the only
source of energy, the local group velocity of the mode must be directed away from
the driver. When applied to the modes k+

1,3 this criterion is in agreement with the
conclusions reached above using the Briggs–Bers method: k+

1,3 have positive (and is
found downstream) and negative (and is found upstream) local group velocities for
Im(ω) = 0 respectively. However, the Lighthill criterion is at variance with the result
for the mode k+

2 for a > a1, which has a negative local group velocity on the axis
but which is found downstream of the driver. The reason for this discrepancy is of
course that in our problem both the driver and the mean flow are sources of energy
so that Lighthill’s criterion is not necessarily applicable, and as is made clear in §4.4
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energy can move both into and out of the system through the driver. Crighton &
Oswell therefore emphasize that in the presence of mean flow the spatial location of
the modes can only be reliably determined by consideration of the global behaviour
of the k zeros of the dispersion relation in the whole complex plane.

The highly anomalous behaviour of the mode k+
2 (ω) in ωs < ω < ωb is perhaps

the most striking and unexpected feature of Crighton & Oswell’s analysis, and our
aim here is to identify how this is modified by plate curvature. As seen in figure 4
the anomalous behaviour is certainly observed in our cylinder problem for the very
large value of a used in figure 3(a), but not for the smaller (but still large) value used
in figure 3(b). By plotting a whole series of graphs of the form shown in figure 4,
it turns out that the anomalous behaviour is intimately connected with the existence
of the branch point k = kb. In fact, for a < a1(U) (for which no real branch points
exist) the anomalous behaviour could not be found for any ω and a, so that in such
cases the spatial location of the neutral modes could be correctly predicted using
Lighthill’s local group velocity criterion in an entirely obvious way. Also, it is worth
emphasizing here that even for a > a1(U) no anomalous propagation behaviour was
found for modes lying on the lower-wavenumber loop joining ka to the origin (see
figure 3a). As has already been noted, a1 is an exceedingly large number, and this
suggests that even a very small amount of plate curvature will be enough to eliminate
Crighton & Oswell’s anomalous propagation effect. For instance, for 2 cm thick steel
plate in water with the mean flow speed 9.8 m s−1 (as in figures 3 and 4), the plate
radius of curvature would have to be in excess of 3.3 km in order to observe the
Crighton & Oswell anomalous propagation! Since such a large radius of curvature
is quite unattainable in a practical engineering situation, it seems that the Lighthill
local group velocity criterion is entirely applicable in practice to our problem.

4.3. Energy considerations

Benjamin (1963) has classified the neutral waves in compliant-surface problems ac-
cording to their energy, E∗, defined to be the work done by an external force in
creating the given steady-state wave from rest at t = −∞ (or, more precisely, the
increase in wall strain and kinetic energy minus the work done by the hydrodynamic
forces on the wall in establishing the particular disturbance). Type A, or negative-
energy, waves have E∗ < 0, and their generation results in a decrease in the energy
of the system relative to the quiescent state; negative energy waves are destabilized
by damping effects, which act to reduce the wave energy and hence make E∗ more
negative. Type B, or positive-energy, waves have E∗ > 0; their generation leads to
an increase in the energy of the system and they are stabilized by damping. Cairns
(1979) has derived an expression for E∗ in terms of the system dispersion relation.
Following his method, we consider a wave for which w = A(T ) exp(ik0z− iω0t), where
A(T ) is the wave amplitude which is a function of the slow time T over which the
wave is built up from rest. Substituting this, and similar expressions for the transverse
displacements, into the shell equations (2.2) yields an expression for the external force,
F0(T ) exp(ik0z − iω0t), required to generate the wave, from which it can be shown
that the normalized wave energy is

E ∝ ω0

∂D

∂ω
|A|2, (4.12)

with the derivative of D evaluated at k0, ω0. It therefore follows that the sign of E is
given exactly by the sign of ω0∂D/∂ω.

For the dispersion curves given in figure 3 it is an easy matter to verify numerically,
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and in the limit of small U to prove analytically (using (4.4) and noting that ω � k),
that on the lower branches ∂D/∂ω < 0 and on the upper branches ∂D/∂ω > 0 (so in
particular in figure 3(a) the lower branch includes the branch starting at the branch
point k = kb and running through the points k = ks,p). In figure 3 the waves on the
lower branches with positive ω therefore correspond to negative-energy waves, and on
the upper branches to positive-energy waves. In figure 3(d) note how both branches
shown correspond to positive-energy waves, since ω < 0 on the lower branch. We
are therefore able to identify a critical value of a below which there are no negative-
energy waves present in our system, and this critical condition must correspond to
the turning point k = kp occurring at ωp = 0, so that no portion of the lower branch
of the dispersion curve lies in ω > 0. As shown at the end of §4.1, the condition for
our system to possess negative-energy waves therefore corresponds to the requirement
that a > a2(U), with a2(U) given by (4.10). Again considering 2 cm thick steel in
water with U = 0.05, we find that we need a∗ larger than 318 m in order to get
negative-energy waves, which although considerably less than the corresponding value
of a1, also seems rather larger than might be found in most applications.

4.4. Driver admittance

It will prove illuminating to investigate the direction in which energy is flowing
between the plate and the mean flow, and the simplest way to do this is to investigate
the rate of working of the ring-force driver at z = 0. We consider single-frequency
forcing (strictly the long-time limit of the start-up problem described in §2) with ring
force F0 exp(−iωt)δ(z), and the driver admittance A0(ω) is then defined to be the
ratio of the cylinder radial velocity at z = 0 to the amplitude of the forcing, so that
−iωw(0) = A0(ω)F0. From equation (2.7) it is easy to show that

A0(ω) =
6iω

πaρ2

∫ ∞
−∞

dk

D(k, ω;m)
, (4.13)

where the integration contour is the real k-axis indented above or below the k zeros
of D(k, ω;m) in the way prescribed by the Briggs–Bers method described in §2.3. Note
that the turning point k = kp is formed by the coalescence of the modes k+

1 and k+
3

from opposite sides of the k-axis, in which case it is not possible to deform the contour
in (4.13) so as to avoid the singularity at k = kp. Similarly, it appears that the turning
point k = kq in figure 3(c) is also formed by modes pinching together from opposite
sides of the real axis (the turning point at k = ks in figure 3(a) is formed by the
merging of k+

1 and k+
2 from above the real axis and is not a pinch point); this means

that A0(ω) diverges whenever the turning points at ωp,q exist. The rate of working
of the ring force, integrated over all θ, can then be calculated as πRe(A0)|F0|2, from
which it can be seen that the direction of power transfer through the driver depends
on the sign of Re(A0): if Re(A0) > 0 then the driver injects energy into the system,
but if Re(A0) < 0 then the driver must absorb energy from the system.

In order to calculate Re(A0) one only needs to consider contributions from poles
which either lie on, or in the convectively unstable case a > a1(U) have crossed over,
the real k-axis, which of course corresponds to the far-field action of the driver (the
near-field action correspond to the Cauchy principal-value contributions to (4.13),
which only feature in Im(A0)). In figure 5 we plot Re(A0) against ω for two values of
a. In figure 5(a) we have a2(U) < a < a1(U), and note how Re(A0) can take values
of either sign, with infinities at the two pinch points ω = ωp,q , while in figure 5(b) we
have a < a3(U) and Re(A0) is everywhere positive and finite.

The fact that Re(A0) can be negative, corresponding to absorption of energy by the
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Figure 5. Plots of the real part of the driver admittance against frequency for the external
problem. We have (a) a = 4000 (a > a2) and (b) a = 500 (a < a3), with other conditions as in
figure 3.

driver from the mean flow, is linked to the presence of negative-energy waves. The
energy flux in the positive x-direction associated with a neutral mode is simply J =
E∂ω/∂k. In figure 3(a) for the frequency ωs < ω < ωb, the negative-energy modes k+

1,3

have J < 0 and J > 0, and are located in x > 0 and x < 0, respectively and therefore
contribute to the energy absorption by the driver. Crighton & Oswell (1991) clearly
explain that the presence of these two negative-energy waves leads to Re(A0) < 0 for
ω in this anomalous frequency range. (Interestingly, the negative-energy anomalous
mode k+

2 has J > 0 and is found in x > 0 and therefore actually contributes to the
energy emission by the driver, but apparently not sufficiently to counteract the effect of
the other two modes.) In our cylinder problem we have already shown that provided
a < a1(U) then the sign of the local group velocity of a neutral mode correctly indicates
its spatial location, from which it follows that any negative-energy waves will transport
energy towards the driver (i.e. like modes k+

1,3 above). Hence, as long as negative-
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energy waves exist in our system it follows that there is potentially a net absorption of
energy by the driver, and hence that Re(A0) < 0, for some range of ω. For a > a2(U)
we can therefore have Re(A0) < 0, but for a < a2(U) there are no negative-energy
waves and hence Re(A0) must always be positive – this is fully confirmed in figure 5.

For figure 5(a) in the range 0 < ω < ωq there exist both positive-energy waves
(from the upper branch, and from the lower branch for negative k in figure 3c) and
negative-energy waves (on the lower branch for positive k), so that as can be seen
the admittance can take both positive and negative values depending on the relative
magnitudes of these terms. As is clear in figure 5(a), the admittance approaches zero
at small ω, but in fact it turns out to be rather difficult to resolve its precise behaviour
numerically, due to the very close proximity of several roots of the dispersion relation.
This difficulty could be addressed by use of the sort of asymptotic analysis for small
ω carried out in §3 of Crighton & Oswell (1991), but this only seems tractable if one
also uses a � 1 and U � 1 so as to simplify the dispersion relation. However, since
the main purpose of this subsection is to verify the conclusions about the existence
of negative-energy waves made earlier, we will not pursue this point further in the
present paper. It suffices to say that the value of ReA0 appears to be insignificant for
small values of ω in this range. Also, the distinct maximum on the curve shown in
figure 5(b) presumably arises as the result of a balance between the contributions to
the admittance by the various positive-energy waves, but does not seem to the author
to admit any obvious physical interpretation.

5. The effects of dissipation
So far we have supposed that dissipation has been completely absent from our

system. However, as has been explained by Cairns (1979), the effects of the inclusion
of dissipation (for instance, by supposing that suitable plate parameters possess an
imaginary, dissipative component) can be inferred from the sign of the wave energy:
positive-energy waves are stabilized by dissipation, and negative-energy waves are
destabilized. In this section we extend that argument by considering specifically the
real pinch point at k = kp, which as described in the previous section exists for a > a3

and for U < Uc(a, m) (for U > Uc(a, m) the pinch point k = kp is complex and leads to
absolute instability). We note that an exactly comparable analysis has been completed
by Abrahams & Wickham (1994) for the fluid-loaded flat plate (i.e. a = ∞).

Consider first a general system in which the inclusion of a small amount of
dissipation yields the dispersion relation

D(k, ω) = −iεV (k, ω), (5.1)

where ε � 1 is a dimensionless measure of the magnitude of the dissipation, and
D(k, ω) = 0 is the dissipationless dispersion relation. Since the point k = kp is a pinch
point, it follows that D(kp, ωp) = ∂D(kp, ωp)/∂k = 0, and if we expand (5.1) in a Taylor
series about the pinch point and then differentiate this expansion with respect to k,
we find

∂ω

∂k

[
Dω + (ω − ωp)Dωω + (k − kp)Dkω

]
+(k − kp)Dkk + (ω − ωp)Dkω + . . . = −iε

∂V

∂k
+ . . . , (5.2)

where all the derivatives of D and V are evaluated at k = kp, ω = ωp and the
suffices here denote partial differentiation. We now look for a saddle point of the
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full dispersion relation (5.1) by setting ∂ω/∂k = 0 in (5.2). If we suppose that
this saddle point lies a small distance from the dissipationless pinch point, so that
|k − kp|, |ω − ωp| = O(ε), then by expanding both (5.2) and the Taylor expansion of
(5.1) in powers of ε we find an expression for the location of the saddle to O(ε) in
the form

ω − ωp
ωp

= −iε

[
V

ωDω

]
k=kp,ω=ωp

,

k − kp = iε

[
V

Dkk

(
Dkω

Dω
− Vk

V

)]
k=kp,ω=ωp

.

 (5.3)

Moreover, this saddle point must be a genuine pinch point of (5.1) provided that it is
formed by the coalescence of k zeros from upper and lower half-planes as Im(ω) is
reduced to zero, and this can easily be checked by considering the behaviour of (5.1)
for large |ω, k|. Indeed, it follows that provided |εV/D| � 1 for |ω, k| � 1, then the
behaviour of (5.1) for large Im(ω) is the same as in the dissipationless case, so that
the saddle (5.3) is a genuine pinch point.

From (5.3) we can see that the real pinch point of the dissipationless dispersion
relation has been destabilized by dissipation to give an absolute instability, provided
that the imaginary part of ω in (5.3) is positive. For typical forms of plate dissipation
it seems that V (kp, ωp) > 0, and we therefore see that the sign of Imω depends only on
the sign of ωp∂D/∂ω, which is in turn the sign of the wave energy given in (4.12). We
can therefore conclude that, for the forms of dissipation described above, a real pinch
point corresponding to a negative-energy wave is destabilized by dissipation to give
absolute instability, and that one corresponding to a positive-energy wave is stabilized.

For the cylinder problem, plate dissipation can be included by introducing a small
negative imaginary part into the solid sound speed, so replacing c∗p

2 by c∗p
2(1 − iε)

with ε > 0. In the most general case this produces a complicated form of dispersion
function V (k, ω), but if we restrict attention to the case of large a and m = O(1) then
it follows that we can set m̃ = 0, so that

V (k, ω) = ω2 − (ω −Uk)2F(k; a) +
k2ν2ω2

a2
(
k2 − 1

12
ρ2ω2

)2
. (5.4)

Now, at k = kp on the lower branch of the dispersion curves in figure 3 we do
indeed have ω∂D/∂ω < 0 (i.e. a negative-energy wave) provided that a > a2(U), and
moreover from (5.4) V (kp, ωp) > 0 (since as already noted F(k; a) < 0 for all real k
and m). It therefore follows that for a > a2(U) the effect of including plate dissipation
will be to make the flow absolutely unstable for all U, with the absolutely unstable
growth rate being proportional to ε; this is exactly equivalent to the result found by
Abrahams & Wickham (1994) for a flat plate. For a3(U) < a < a2(U) it appears that
the pinch point k = kp corresponds to a positive-energy wave, and for a < a3(U) the
pinch point does not exist anyway, so that at least from this analysis it would appear
that our cylinder flow with small dissipation is not absolutely unstable for a < a2(U).

The effect of dissipation on points other than (kp, ωp) can also be inferred. The pinch
point (kq, ωq) shown in figure 3(c) has Dω(kq, ωq) < 0 and ωq < 0, and is therefore
stabilized by dissipation (i.e. introducing dissipation causes the imaginary part of ωq
to become negative). With regard to the rest of the dispersion curves, we have already
seen that the upper branches correspond to positive-energy waves (for instance, in
figure 3a the upper branches joining the origin to ka and kb to infinity); these modes
are stabilized by the introduction of dissipation. Alternatively, the lower branches of



408 N. Peake

the dispersion curves correspond to either negative-energy waves when ω > 0 (for
instance, the lower branch joining kb to infinity in figure 3a), which are destabilized by
dissipation, or to positive-energy waves when ω < 0 (for instance, the lower branch
in figure 3d, as described in §4.3), which are again stabilized by dissipation.

6. Concluding remarks
In this paper we have examined the causal motion of a fluid-loaded cylinder forced

by a harmonic ring force in the presence of mean flow, and have concentrated on the
case of large cylinder radius so as to assess the effects of plate transverse curvature on
Crighton & Oswell’s (1991) results for a flat plate. We see that the unstable motions
observed by Crighton & Oswell (absolute instability for U > U0 and convective
instability for U < U0 in ω < ωs) are in a sense stabilized by the hoop stiffness
introduced by the plate curvature – the absolute instability boundary occurs at higher
flow speed (very much higher for moderate a), while convective instability will still
occur for flow speeds below the absolute instability boundary but only provided
that a is very large indeed (i.e. a > a1). The most unusual feature of Crighton &
Oswell’s analysis, however, is the existence of a neutral wave with its group velocity
pointing towards the driver, but again we show that plate curvature has the effect of
eliminating this anomalous mode except for very large values of a. In fact, in the limit
of small U we were able to deduce condition (4.5) for the existence of both convective
instability and the anomalous neutral mode, which in dimensional form becomes

a∗

h∗
>

(
1− ν2

3

)1/2(
U∗

c∗p

)−2

. (6.1)

Since c∗p � U∗ in many underwater applications, it seems unlikely that this condition
could ever be met for rigid plates, so that we can conclude that the usual radiation
condition of outgoing waves at infinity is likely to be valid in such practical situations.
(However, we also note that for compliant coatings c∗p can be much smaller, and cer-
tainly comparable to U∗, so that the anomalous neutral mode could potentially exist
in such cases.) It is interesting to note that (6.1) is independent of the fluid–solid
density ratio. Crighton & Oswell also identify negative-energy waves in their flat-plate
system. The anomalous mode mentioned above is in fact a negative-energy wave,
but other negative-energy waves can exist in our cylindrical system down to radii
which, while still large, are smaller than a1; again for small U we found in (4.10) that
negative-energy waves are present provided that, in dimensional form,

a∗

h∗
>

(
8

9

)1/3 (
1− ν2

)1/2
(
ρ∗s
ρ∗0

)2/3(
U∗

c∗p

)−4/3

. (6.2)

Note here that the fluid–solid density ratio does now appear, and in such a way that
the lighter the fluid loading then the greater the radius of curvature needed to observe
negative-energy waves (for instance, the critical a∗ for steel in air is about 80 times
greater than for steel in water at the same flow speed). It should be noted that the lo-
cation of the mean flow, either inside or outside the cylinder, has little effect on our re-
sults, and indeed the small-U analysis is identical for both internal and external prob-
lems. Of course, the two dispersion relations are quite different when a = O(1), but
our aim in this paper has been to investigate the behaviour for large a, in which case it
seems that what matters is the magnitude of the transverse curvature and not its sign.

In conclusion, we can say that transverse plate curvature can have a marked
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effect in modifying the flat-plate dynamics studied by previous authors. One possible
extension of the present work might be to explore the whole range of possible values of
azimuthal wavenumber m. Here we have restricted attention to the regime m = O(1),
but preliminary analysis indicates that a range of different preferred scalings of the
form m = O(U−α) with α > 0 are possible, and this will be investigated further.

The author is grateful to Professor D. G. Crighton and Dr A. D. Lucey for
helpful discussions. This work was supported by the Office of Naval Research under
the program in Structural Dynamics monitored by Dr G. L. Main, grant number
N0014-96-1-1085.

Appendix
In this Appendix we present for completeness the equations of motion and disper-

sion relation for a two-dimensional fluid-loaded plate with spring foundations in the
presence of mean flow, since these are closely related to our cylindrical problem in
the limit of large a. It therefore follows that some of the asymptotic results derived
for the cylinder apply exactly to this case, and these are summarized here.

Consider a thin elastic plate lying along the x∗-axis with mean flow of speed U∗

running parallel to the x∗-axis above the plate and driven by a point force F∗(t∗) at
the origin. The plate equation is

ρ∗s h
∗ ∂

2η∗

∂t∗2
+ B∗

∂4η∗

∂x∗4
= F∗(t∗)δ(x∗)− p∗(x∗, t)− λ∗η∗, (A 1)

where the bending stiffness is B∗ = c∗p
2h∗3ρ∗s /12 and λ∗ is the dimensional spring

stiffness of the spring foundation. Note that if we set λ∗ = 0 then (A 1) reduces
exactly to the plate equation used by Crighton & Oswell (1991). Now proceeding
exactly as before, we find that the dispersion relation for this system becomes

− k4 + ω2 +
(ω −Uk)2

|k| − λ∗(ρ∗s h
∗)4

ρ∗0
4B∗

= 0, (A 2)

which we can see is closely related to the dispersion relation for the cylinder in the
limit of large a and small U (see e.g. equation (3.1)). By a trivial modification of the
asymptotic results presented in the main body of the paper, we are therefore able to
derive the following exact results for the elastic plate with spring foundations.

(a) The flow is absolutely unstable provided that U is larger than the single positive
root of

1 =
h∗λ∗

c∗p
2ρ∗s ρ

4

55/328/3

U8/3[U2/3 −U2/3
0 ]

. (A 3)

(b) If the flow is not absolutely unstable, then it will be convectively unstable over
a particular range of frequencies if

λ∗h∗

ρ∗s c
∗
p

2
<
ρ4U4

48
. (A 4)

This is also the condition for the system to exhibit the anomalous propagation effect
described by Crighton & Oswell (i.e. for there to exist a mode which possesses a
negative group velocity but which is located downstream of the observer).

(c) The system will possess negative-energy waves, and therefore potentially admit
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ReA0 < 0 for some range of frequencies, if

λ∗h∗

c∗p
2ρ∗s

<
ρ4U8/3

214/3
. (A 5)

Finally, following the suggestion of an anonymous referee, we note that the effects of
gravity can be included in a straightforward manner. If we suppose that there is a
fluid of density ρ∗1 below the plate, and that gravity acts downwards, then the effects of
buoyancy would lead to an extra term −g∗(ρ∗1− ρ∗0)η∗ on the right-hand side of (A 1),
where g∗ is the acceleration due to gravity. Gravity is therefore seen to have the same
effect as a spring foundation, and it therefore follows that the significant modifications
to Crighton & Oswell’s flat-plate results predicted for a spring foundation could also
be produced by gravity.
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